

National Manual of Assets and Facilities Management

Volume 6 Chapter 9

Electrical Systems Maintenance Plan for Healthcare

Document No. EOM-ZM0-PL-000025 Rev 001

Electrical Systems Maintenance Plan for Healthcare

Document Submittal History:

Revision:	Date:	Reason For Issue
000	28/03/2020	For Use
001	18/08/2021	For Use

THIS NOTICE MUST ACCOMPANY EVERY COPY OF THIS DOCUMENT

IMPORTANT NOTICE

This document, ("Document") is the exclusive property of Government Expenditure & Projects Efficiency Authority.

This Document should be read in its entirety including the terms of this Important Notice. The government entities may disclose this Document or extracts of this Document to their respective consultants and/or contractors, provided that such disclosure includes this Important Notice.

Any use or reliance on this Document, or extracts thereof, by any party, including government entities and their respective consultants and/or contractors, is at that third party's sole risk and responsibility. Government Expenditure and Projects Efficiency Authority, to the maximum extent permitted by law, disclaim all liability (including for losses or damages of whatsoever nature claimed on whatsoever basis including negligence or otherwise) to any third party howsoever arising with respect to or in connection with the use of this Document including any liability caused by negligent acts or omissions.

This Document and its contents are valid only for the conditions reported in it and as of the date of this Document.

Table of Contents

1.0 PURPOSE	5
2.0 SCOPE	5
3.0 DEFINITIONS	6
4.0 REFERENCES	8
5.0 RESPONSIBILITIES	9
5.1 Electrical Safety Group (Health Technical Memorandum).....	10
6.0 PROCESS	13
6.1 Systems Overview.....	13
6.1.1 High Voltage.....	13
6.1.2 Medium Voltage	13
6.1.3 Low Voltage.....	13
6.1.4 Extra Low Voltage	13
6.2 Electrical System Components	14
6.2.1 Electrical Subsystems	14
6.2.2 Equipment Used in Electrical Systems	14
6.3 Equipment Maintenance Frequencies and Requirements	14
6.3.1 Daily.....	15
6.3.2 Weekly.....	16
6.3.3 Monthly.....	16
6.3.4 Quarterly.....	18
6.3.5 Biannually.....	18
6.3.6 Annually.....	19
6.3.7 Biennially	19
6.3.8 Quinquennial	19
7.0 ATTACHMENTS	21
Attachment 1 – EOM-ZM0-TP-000007 – UPS Yearly Maintenance Plan Example Template.....	22
Attachment 2 – EOM-ZM0-TP-000008 – Maintenance Skill Level Requirements Matrix	23
Attachment 3 – EOM-ZM0-TP-000009 – Electrical system PM Type Compliance Matrix Example Template	25

1.0 PURPOSE

The purpose of this document is to provide the Entity and/or Facilities Management Company (FMC) guidelines for the development of their Maintenance Management Plans for Electrical Systems within Healthcare.

This Plan provides examples of maintenance scheduling frequencies and advises best practice for Planned Maintenance (PM) tasks. This document is intended to:

- Impart knowledge that enables the Entities and/or FMCs a base structure from which they can develop a set of documents and procedures.
- Enable the Management, Senior Management and Engineers to have a clear understanding of the minimum maintenance requirements, along with Entity, Client, FMC, staff roles, and responsibilities.
- Identify the base analytical information that should be recorded by engineers and technicians to ensure discrepancies are pre-emptively identified and rectified through the maintenance management processes applied
- Guide the Entity and FMC service providers on how to develop the Electrical Maintenance Management Plans/Manual.
- Provide a structured flow and reliable reference points within the document that can be related back to the relevant sections.
- Give examples and guidance on how to formulate a bespoke set of documentation, developed against a **What, Why, How, Who and When** structure that includes the **Shall, Should, Consider and Advise** philosophy.

2.0 SCOPE

This chapter will cover Roles and Responsibilities, Systems, Sub-Systems, Equipment and the equipment PM scheduling requirements that shall be incorporated as a minimum into the finalized bespoke facility maintenance plan.

The Maintenance Management document (Operating Manual) has a structured flow of elements that will enable the Entity to develop the bespoke maintenance plans for the facility.

This document will address the following criteria of a maintenance management plan:

- **What** needs to be included - *formulated tasks against adopted standard*
- **Why** it should be incorporated - *standards, regulations, law, good practice, and efficiencies*
- **How** to build the document- *structure, process, guidance, and flow*
- **Who:** Roles and Responsibilities - *responsibilities for what elements, competence level requirements, and management inputs*
- **When:** Scheduled frequency - *required scheduled periods, PM intervals, and incorporated content. This is dependent on adopted standards, or best practice where these standards do not exist.*

Incorporated diagrams and/or flow charts are for guidance and should not be classed as all-inclusive but as elements that should be further developed as required. These should be in-line with the finalized document ensuring structured flow and reliable reference points that can be related back to relevant sections of documentation.

Entities and FMCs should be aware that the variants of facilities that the document covers may not include the equipment highlighted in this document, as a standard. Therefore, care around developing the bespoke maintenance plan is paramount.

Electrical Systems Maintenance Plan for Healthcare

For Facilities that have specialist plant/equipment, the development of the maintenance plan shall include cross-referencing to other specialist equipment/plant that may be found in other Facilities types i.e. a University hospital (surgeon teaching facilities), healthcare research laboratory (Bio-hazard extract and Aseptic suite with specialist infection and access control) or Palliative care (specialist environmental lighting) and Dialysis clinics (specialist environmental lighting and reverse osmosis (RO) plant). Therefore, Specialist Healthcare facilities are not covered within this document guide and the FMC will need to reference the specialist manufacturer O&M requirements.

For Facilities that have such departments and/or plant/equipment, the development of the maintenance plan shall include cross-referencing to other specialist equipment/plant that may be found in other Facilities types and by referencing the specialist manufacturer O&M requirements.

For a facility's bespoke document, other standards shall be considered and the most effective and/or stringent scheduling/planned maintenance elements adopted. The overarching Electrical systems High Voltage (HV), Medium Voltage (MV), Low Voltage (LV) and Extra Low Voltage (ELV) may be found in a Healthcare environment and include other sub-system and equipment examples for maintenance plan development.

Some facilities will include all of the above. However, inclusion of these systems into a facility's bespoke maintenance management plan should be restricted to only those found within the Entity's facilities. The finalized scheduling and task documents disseminated, as working documents shall be reviewed on a regular basis thereafter to ensure all information and process related content are updated, relevant, and correspond with the Asset List for maintainable plant and equipment within the facility.

For the purpose of this document, a "Hospital facility" has been defined as a building, portion of a building or space where various activities take place, including but not limited to:

- General Hospitals
- Clinics
- Nursing homes
- Dental care facilities

Note: Some parts of the maintenance plan may require scheduling to be calculated in run-hours rather than calendar based activities.

3.0 DEFINITIONS

Term	Definition
AHJ	Authority Having Jurisdiction
AP	Authorized Person
ATS	Auto Transfer Switch
BMS	Building Management System
CB	Capacitor bank
CBAHI	Saudi Central Board for Accreditation of Healthcare Institutions
CBS	Central Battery System
CMMS	Computer Maintenance Management System
COSHH	Control of Substances Hazardous to Health Regulations
CP	Competent Person
CSSD	Central sterile services department
DB	Distribution Board
DSP	Distribution Service Provider (electrical generation entity)
ECRA	Electricity & Co-Generation Regulatory Authority
ELV	Extra Low Voltage
ELV	Extra Low Voltage is classified as below 50V
EPDS	Emergency Power Distribution System
EPS	Emergency Power System
EPSS	Emergency Power Supply System

Electrical Systems Maintenance Plan for Healthcare

Term	Definition
FM	Facilities Manager
FMC	Facilities Management Company (facilities maintenances)
FOC	Facilities Operating Client (client/building owner)
FOM	Facilities Operations Management (client/building owner representative)
HBN	Health building note
HC	Healthcare
HF	Harmonic Filter
HTM	Health Technical Memoranda
HV	High Voltage is classified as above 13.8KV (an allowable variance of between 13.1kV to 14.5kV is applicable)
IBC	International Building Code
IEC	International Electro technical Commission
IEEE	Institute of Electrical and Electronic Engineers
IET	Institute of Engineering & Technology
IFC	International Fire Code
IPS	Isolated Power Supply
LV	Low Voltage is classified as being above 50V and below 600V
MDB	Main Distribution Boards
ME	Maintenances Engineer
MS	Method Statement
MSDS	Materials Safety Data Sheet
MV	Medium voltage is classified as being above 600V and below 13.8KV
MVS	Medium Voltage Substation
MVSN	Medium Voltage Supply Network
NEMA	National Electrical Manufacturers Association
NFPA	National Fire Protection Association
NSF	National Standards Foundation
O&M	Operations and Maintenance
OEM	Original Equipment Manufacturer
OSHA	Occupational Safety and Health Administrations
PM	Planned Maintenance
PPE	Personal Protective Equipment
QPM	Quarterly Preventative Maintenance
RA	Risk Assessment
RAMS	Risk Assessment & Method Statement
RMU	Ring-Main Unit
RO	Reverse Osmosis
SASO	Saudi Standards, Metrology and Quality Organization
SEC	Saudi Electrical Company
SMDB	Sub-Main Distribution Board
SOP	Standard Operating Procedure
SS	Substation
TR	Transformers
UL	Underwriters Laboratories, Inc.
UPS	Uninterruptable Power Supplies
VFD	Variable Frequency Drive
NCP	Nurse Call panels
PDS	Pneumatic Delivery station
MGCP	Medical Gas control panels

Table 1: Definitions

4.0 REFERENCES

HTM standards, in conjunction with NFPA and Saudi Central Board for Accreditation of Healthcare Institutions (CBAHI), have been used as an overall reference on healthcare.

This document contains examples intended to guide the Entity and/or FMC on best industry practices and incorporates the following international standards and regulations in conjunction with the Kingdom of Saudi Arabia's established codes and decrees:

- Saudi Central Board for Accreditation of Healthcare Institutions (CBAHI)
- HSE GS38 – Electrical test equipment for use on low voltage electrical systems
- HTM 00 2015 – Healthcare Technical Memoranda
- HTM 06-01 2015 – Healthcare Technical Memoranda
- HTM 06-02 2015 – Healthcare Technical Memoranda
- HTM 06-03 2015 – Healthcare Technical Memoranda
- HSE L22 – Safe Use of Work Equipment - Provision and Use of Work Equipment Regulations 1998 (PUWER)
- IET – BS 7671:2018
- Institute of Engineering Technology (IET) – Guide to Electrical Installations in Medical Locations:2017
- NFPA 1 – Fire Code
- NFPA 4 – Standard for Integrated Fire Protection and Life Safety System Testing
- NFPA 25 – Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems
- NFPA 50 – Standard for Bulk Oxygen Systems at Consumer Sites
- NFPA 70 – National Electrical Code
- NFPA 70A – National Electrical Code Requirements for One, and Two-Family Dwellings
- NFPA 70B – Recommended Practice for Electrical Equipment Maintenance
- NFPA 70E – Standard for Electrical Safety in the Workplace
- NFPA 73 – Standard for Electrical Inspections in the Workplace
- NFPA 78 – Guide to Electrical Inspections
- NFPA 79 – Electrical Standard for Industrial Machinery
- NFPA 101 – Life Safety Code
- NFPA 110 – Standard for Emergency and Standby Power Systems
- NFPA 110, Chapter 5 and 8 Emergency Power System (EPS)
- NFPA 110, Chapter 8 and Emergency Power Supply System (EPSS)
- NFPA 111 – Standard on Stored Electrical Energy Emergency and Standby Power Systems
- NFPA 418 – Standard for Heliports
- NFPA 496 – Standard for Purged and Pressurized Enclosures for Electrical Equipment
- NFPA 497 – Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas
- NFPA 791 Recommended Practice and Procedures for Unlabeled Electrical Equipment Evaluation
- NFPA 853 Standard for the Installation of Stationary Fuel Cell Power Systems
- NFPA 1078 Standard for Electrical Inspector Professional Qualifications
- NFPA 99 Health Care Facilities Code
- Saudi Standards, Metrology and Quality Organization (SASO)
- Saudi Electrical Codes
- Saudi Electrical Company-Electrical Standard
- SFG20
- HBN 00-07
- HSG 85 – Electricity at Work Safe Working Practices
- HSR 25 (Guidance) – Memorandum of guidance on the Electricity at Work Regulations:1989
- The Electricity at Work Regulations Act 1989
- The Electricity Safety, Quality and Continuity Regulations Act:2002
- URN 02/144 (Guidance) – Electricity Safety, Quality and Continuity Regulations Act 2002

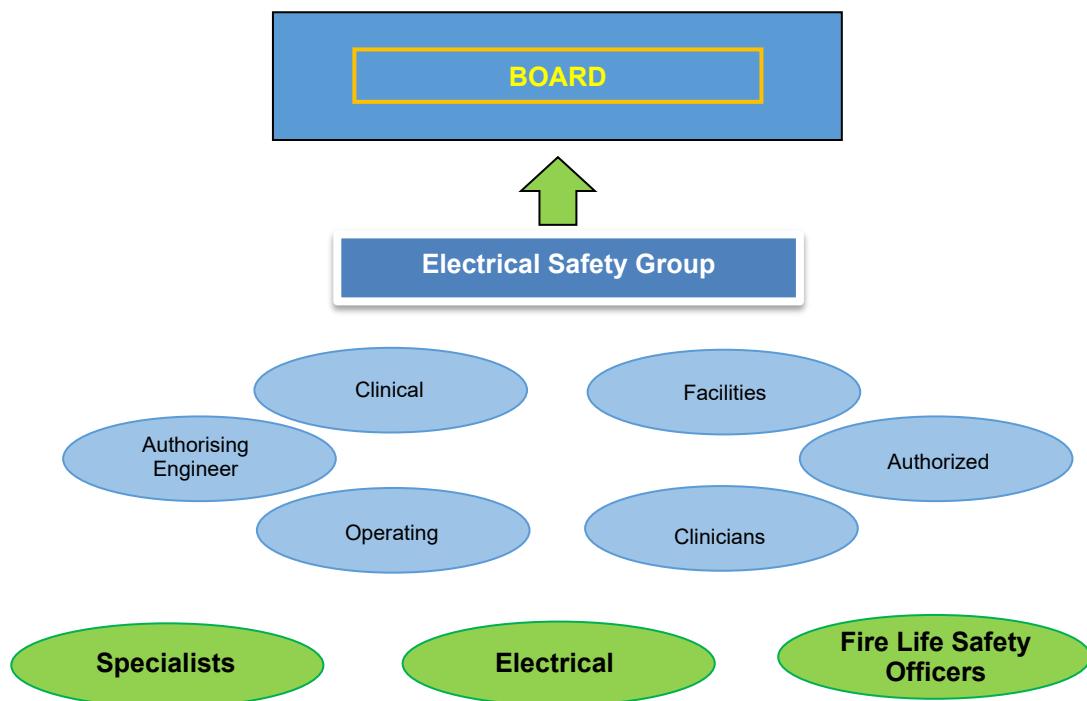
5.0 RESPONSIBILITIES

Notwithstanding the recommendations presented in this document, the final responsibilities for developing the final maintenance management plans and tasks as will be applied to the Electrical Systems shall reside with the Entity, FMC, and/or Maintenance Engineer (ME).

Role	Description
Ministry Of Health	Governmental Entity having jurisdiction over Healthcare governance for the region.
Chief Executive of Entity (Facilities Operating Client)	Chief Executive of the Entity having overall management of the facility
Electrical Safety Group (Health Technical Memorandum)	Committee appointed by and representing the Facilities Operating Client
Facilities Management Company (FMC)	The facilities management company is an appointed client representative who, in collaboration with the client, controls the operational engineering departments; and who is responsible and accountable for the AP's and CP's as well as the site engineering systems, their design, installation, operations, and maintenance and ensuring control of those systems are in line with the Client SOP for the maintenance activities.
Authorizing Engineer	<p>The Authorizing Engineer, AE, is appointed by the Responsible Person (normally under the recommendation of the operating client), to take responsibility for the effective management of the safety guidance. The AE should possess the necessary degree of independence from local management to act where necessary and alert the chief executive in the event that local management does not take action to avoid harm.</p> <p>The Authorizing Engineer is also responsible for ensuring the Ministry of Health is kept up to date and that the Authorizing Engineer is informed by the Ministry of Health of any known anomalies that may pose a safety risk to the facility or staff and patients.</p>
Designated Responsible Person (Director of Facilities)	<p>The Responsible Person is employed directly by the Entity and is the "Duty Holder" of the engineering systems and the staff who operate those systems; and is overall responsible and accountable for their design, installation, operations, and maintenance and ensuring control of those systems.</p> <p>The Responsible Person has a legal responsibility (within the UK) for ensuring that the Entity has complied with the relevant legal regulations / decree pertaining to those engineering systems and the staff involved.</p> <p>The Responsible Person shall ensure that the systems are kept up to date with the latest relevant legal regulations / decree's.</p> <p>The responsible Person should not be the Authorizing Engineer</p>
Authorized Person (AP)	An individual who has been appointed by the Authorizing Engineer (or by an authorizing body within the Entity); who is trained, competent, skilled, experienced, responsible, and has gained the necessary site knowledge, to operate and maintain the system in a controlled and safe manner. The AP is responsible for work or testing carried out on the system.

Electrical Systems Maintenance Plan for Healthcare

Liaison Office	Person responsible for information flow between FMC and facility departments
HV Qualified Person	A FOC Approved Persons. Certified HV specialist service provider/operative who is qualified, competent and experienced. Has the necessary site knowledge to formulate the necessary client SOP documentation. Oversees the FMC's activities on behalf of the FOC
MV Qualified Person	A FOC Approved Persons. Certified MV specialist service provider/operative who is qualified, competent and experienced. Has the necessary site knowledge to formulate the necessary client SOP documentation. Oversees the FMC's activities on behalf of the FOC
LV Qualified Person	A FOC Approved Persons. Certified LV specialist service provider/operative who is qualified, competent and experienced. Has the necessary site knowledge to formulate the necessary client SOP documentation. Oversees the FMC's activities on behalf of the FOC
Competent Person (CP)	A skilled, knowledgeable, competent, and experienced individual with the necessary training who has been appointed by an Authorized Person (or by an authorizing body within the Entity). The CP can execute the required actions within a permit-to-work and/or any other directional document as assigned.


Table 2: Responsibilities

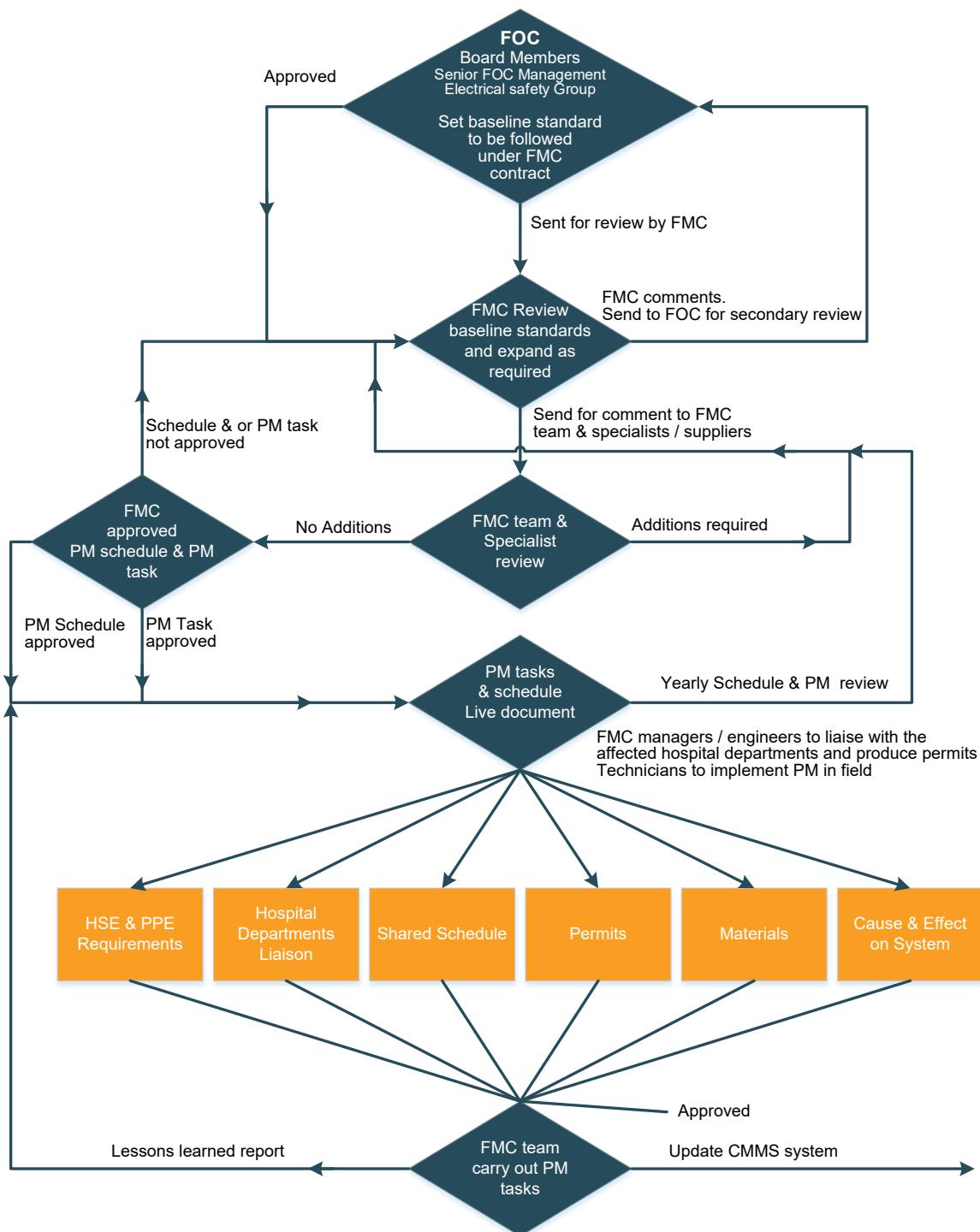
5.1 Electrical Safety Group (Health Technical Memorandum)

In compliance with the HTM, there is a requirement for an Electrical Safety Group appointed by the FOC. The role of the group is to discuss current issues, solutions and forthcoming potential problems (i.e. with new projects or dealing with new legislation), to assist in avoiding project clashes, outages, and applying mitigating actions.

Electrical Systems Maintenance Plan for Healthcare

Figure 1: Electrical Safety Group (Health Technical Memorandum)

Figure 2 below highlights the responsibilities and process flow for the formulation of maintenance plans and activities. The diagram highlights the organization's responsibilities in the formulation of a maintenance strategy that will assist the Entity in achieving corporate goals and in enhancing the facility operations to incur the following benefits:


- Reducing breakdowns of plant and equipment through robust maintenance process
- Early identification of faults or degraded equipment to allow for contingency planning
- Efficient utilization of manpower to undertake maintenance activities, rather than reactive or corrective tasks
- Planning of spare parts and consumables to be available for maintenance activities
- Reduction in warehouse stock and obsolescence
- More accurate reporting to senior management and stakeholders, especially if used in conjunction with CMMS systems
- Better utilization of utilities (power, water etc.) through the efficient use of plant

It should also be a consideration that there may exist a requirement for maintenance staff to be inspected for security. Within a hospital facility there may be interaction with children and vulnerable adults. Therefore, Entities should consider this requirement when setting up maintenance contracts or site based teams.

Further detail on the formulation of strategic plans can be found within the National Manual of Assets and Facilities Management Volume 6, Chapter 4 – Financial Planning.

Electrical Systems Maintenance Plan for Healthcare

Figure 2: Roles & Responsibilities for Schedules & PM Task Implementation

6.0 PROCESS

6.1 Systems Overview

The facility's electrical hierarchical/parent systems including good practice and specialist maintenance requirements are defined as follows:

6.1.1 High Voltage

HV refers to voltages exceeding 13.8 kV (allowable variance of MV 13.1kV – 14.5kV) that do not normally reside within the FMC's scope. However, it is considered good practice to have an established communication protocol in place that forms part of the facilities emergency action plan.

If the HV equipment is or becomes the responsibility of the FMC, they shall engage a registered and certified HV company for all aspects of transformer planned maintenance and scheduling (specialist supplier required). Good practice also dictates that the FMC consider directly employing a qualified HV engineer to oversee all actions on behalf of the FMC or Operating Client. The HV engineer will add a competence level to the Maintenance and Scheduling Process that is independent from the specialist supplier and therefore impartial to the contractor's financial goals.

6.1.2 Medium Voltage

MV is classified as being above 600V and below 13.8kV and will normally be delivered to a facility via a 33kV to 13.8kV transformer. These medium voltage transformers (allowable variance of between 13.1kV to 14.5kV) are often incorporated into the FMC scope. However, it should be noted that depending on the adopted regulations and/or standards, the maintenance tasks and any switching tasks on the MV systems may be required to be carried out only by a registered and certified MV company and/or approved persons.

Good practice also dictates that the FMC consider directly employing a qualified MV engineer to oversee action on behalf of the FMC and/or Operating Client. The MV engineer will add a competence level to the Maintenance and Scheduling Process that is independent from the specialist supplier and therefore impartial to the contractor's financial goals. This role may be fulfilled by a HV/MV certified Engineer.

Routine and Emergency switching operations to MV equipment should only be undertaken by competent persons who have the experience and knowledge of the dangers associated with the equipment.

6.1.3 Low Voltage

LV refers to voltages between 50V and 600V and will normally be delivered at the facility via a 13.8kV to 400V transformer. These transformers (allowable variance of between 360V to 410V) are often incorporated into the appointed FMC's scope. However, it should be noted that, depending on the adopted regulations and/or standards, the maintenance tasks and any switching tasks on the LV system may require registered and/or certified APs or CPs, and the FMC should consider formal certified training of staff for these tasks

6.1.4 Extra Low Voltage

ELV is classified as below 50V and will normally be delivered via an internal equipment transformer connected to a single phase LV system input, such as a fire detection system, Building Management System (BMS), or within dedicated control systems with standby and/or constant 50V AC or DC outputs.

Many of these systems require specialist knowledge and the FMC should consider Manufacturer/Supplier maintenance procedure training to better enable the responsible maintenance staff to operate and monitor these systems.

Refer to **Attachment 2 Maintenance Skill Level Requirements Matrix** for further guidance.

6.2 Electrical System Components

6.2.1 Electrical Subsystems

Electrical subsystems include, but are not limited to:

- Central battery
- Crash Call and Annunciator
- Emergency Power Distribution
- Emergency Power Generation
- Fire Detection and Suppression
- Lighting
- Medical Gas
- Nurse Call
- Pneumatic Delivery
- Public Address
- Oxygen plant
- Aircraft warning lights
- Helipad controls

6.2.2 Equipment Used in Electrical Systems

Electrical equipment used within electrical systems include, but are not limited to:

- Medium Voltage Supply Network (MVSN) Distribution Panel
- Emergency Power Distribution system (EPDS) Panel
- Generator Set
- Auto Transfer Switch (ATS)
- Ring-Main Unit (RMU)
- Transformers (TR)
- Main Distribution Boards (MDB)
- Capacitor Bank (CB)
- Harmonic Filter (HF)
- Sub-Main Distribution Board (SMDB)
- Distribution Board (DB)
- Isolated power supply (IPS)
- Uninterruptable Power Supplies (UPS)
- Variable Frequency Drive (VFD)
- Nurse Call panels (NCP)
- Pneumatic Delivery station (PDS)
- Medical Gas control panels (MGCP)

6.3 Equipment Maintenance Frequencies and Requirements

Equipment maintenance should be conducted on a daily, weekly, monthly, quarterly, annually, biannually, and Quinquennial as outlined below:

The frequency of Equipment maintenance varies on the area and use of the equipment. All equipment maintenance should be conducted on either a daily, weekly, monthly, quarterly, annual, biannual, and Quinquennial frequency. Outlined below are examples of the different frequencies and PM tasks, which can apply to the different areas. :

Example 1.

General Hospitals, Clinics containing a variety of some and or all definitions.

- Reactive call from staff
- Daily
- Weekly
- Monthly
- Quarterly
- Annual
- Biennial
- Quinquennial

Example 2.

Nursing homes, Dental care facilities containing a variety of some and or all definitions

- Monthly
- Quarterly
- Annual
- Biennial
- Quinquennial

The set frequencies and PM tasks for equipment and electrical systems installed within “Example 2” in some cases are common to “Example 1”. However, the equipment and electrical systems will not be scheduled with the same frequency.

A standalone maintenance frequency and task plan may be required. This should be incorporated into the main maintenance plan scheduling, noting that they rely more on reactive than preventative maintenance.

Equipment maintenance should be conducted on a daily, weekly, monthly, quarterly, annually, biannually, and Quinquennial as outlined below:

6.3.1 Daily

These should be carried out as a PM task controlled via the Computer Maintenance Management System (CMMS), or as a “monitoring” function only. This will, however, be very dependent on the adopted operating standards and the facilities operating client’s SOP. Daily assessments and monitoring are key for any Entity to ensure that services and plants are available for the designed function. Ideally, a check should be undertaken at the start of the working day and periodically throughout the shift or working cycle. Simple log sheets can be used to record parameters and demonstrate that areas and equipment have been assessed and monitored.

The systems, areas, and equipment that should be monitored on a daily basis within a healthcare facility and as good practice are:

- LV Main Distribution Boards (MDB’s)
- Theater plant / controls
- Emergency lighting
- Helipad lighting and controls including building aircraft warning lights
- Oxygen plant / controls
- Medical gas plant / controls
- Fire-related equipment (fire pump plant / controls, Novec / FM200 gas suppression plant / controls)
- Isolated Power Supplies (IPS) units (normally located within theaters, intensive care units)
- Other critical system monitoring control panels.

This is not a fully comprehensive list and should be tailored to the facility, depending on the installed equipment being maintained.

Findings should always be recorded into the maintenance log system either as a hard copy or via a software based system.

6.3.2 Weekly

Weekly PM activities are controlled via the CMMS, or as a “monitoring” function only. Findings should, however, be recorded into the maintenance log to assist with the historical data for the facility. This allows for senior management to make fact-based decisions upon the strategy for planned maintenance and financial decisions.

Consistent with good practices, systems, areas, and equipment should be monitored on a weekly basis and as an addition to the daily tasks within a healthcare facility:

- MV/LV emergency generation plant/controls
 - See NFPA 110, Chapter 8 and EPSS for scheduling guidance
- MV/LV EPS (emergency power system)
 - See NFPA 110, Chapter 5 and 8 EPS for scheduling guidance
- Lighting and distribution networks
- Life Safety Systems for Fire detection and suppression (further information is contained within Volume 6 Chapter 12)
- UPS and CBS battery systems
- IPS systems
- Theater control panels
- Other critical system monitoring control panels

Findings should always be recorded into the maintenance log system either as a hard copy or via a software-based system. It should also be noted that, compliant with NFPA standards, some PM weekly tasks should be included as specific PMs within the CMMS.

6.3.3 Monthly

Monthly maintenance tasks are generally classed as “intrusive maintenance” and may involve partial system shutdowns. Therefore, they should be included as part of the maintenance plan in the CMMS, within a paper or software based system. However, the roles and responsibilities, required competencies, site-specific SOPs, and cause-and-effect and risk management activities, need to be taken into consideration when formulating these PM tasks. In particular, stakeholder engagement should be part of the process so that the users and persons affected may be consulted or informed prior to the activity.

Mandatory compliance with regulatory and adopted standards shall, along with any HTM, NFPA, CBAHI references, be taken into consideration. This should comprise part of a Criticality Assessment undertaken at the inception of the maintenance plan to identify those items of the plant that have a significant effect upon operations or compliance with statutory requirements. The Original Equipment Manufacturer (OEM) Service Manuals shall be included within the PM task procedures to ensure that equipment is correctly serviced to reduce potential outages and give increased reliability to the lifecycle. Further guidance for maintenance tasks can be found within the References section of this chapter.

Depending on the criticality of the maintenance and its cause and effect (i.e. on upstream and downstream services, patient wellbeing, Estates, and facility staff), the managing departments should be informed, and approval sought in advance; to circumvent potential risks or outages affecting patients, staff and hospital operations.

When formulating the schedule and/or PM task in line with these considerations, it should be noted that seasonal variances will need to be considered and incorporated (Refer to EOM-Z00-PR-000006 Seasonal Planning Procedure).

Electrical Systems Maintenance Plan for Healthcare

The Maintenance Management Team should liaise with disciplined managers to ensure that multi shutdowns for specific plant and/or equipment are minimalized. The coordination of PM related tasks, engineering staff resource sharing, and work permits will enable the FMC to obtain staff efficiencies and cause as minimal disruption as possible to the healthcare facility departments and patients' wellbeing.

It is also the FMC's responsibility to track/log, update records, review, and ensure that licensing, certification, staff competencies, training, and PM compliance to standards and regulations are continually reviewed and updated with the latest editions and versions. This is a required action that should be scheduled into the maintenance plan and entered into the CMMS as an action point.

Within any maintenance environment, particularly healthcare where high levels of safety are required for staff and patients, the equipment and tools required for maintenance should be tested for compliance with calibration requirements. Personal Protective Equipment (PPE), must be in good condition and any deficiencies or damaged items must be replaced.

Other specialist PPE for example Electrical Arc flash suit, MV rated gloves, fall arrest PPE devices must have an in-date calibration and/or third party certification certificate before being used.

- Refer to BS 697, OSHA 1910-137, ASTM F496-14a, F696-06 for Electrical insulated gloves standards
- Refer to IEC 61482-2, ISO 11612 for Arc flash and heat resistive clothing standards
- Refer to EN 20471, 813, 795, 341, 354, 358, 365 and 361 standards for Work Positioning Devices, restrain belts, descender devices.

It is good practice to include within the Risk and Method Statements these checks to ensure that they are recorded and that formal inspections are carried out. Additionally, recording this within the CMMS allows for historical data to be tracked and consumable or perishable stock to be ordered and delivered in a timely manner, thereby preventing the delay of activities. These tasks should be scheduled one to two weeks prior to the validity end date, or longer for longer lead items, to enable continuity and efficiency of use.

When structuring the maintenance plan, it should be noted, that the HTM's give very good operations guidance however the NFPA standards provide PM examples, including compliant scheduling guide tables.

As an example, for the Emergency Power System, (EPS), a tabulated baseline requirement table with daily, weekly monitoring, and monthly, biannual, annual, biennial, Quinquennial PM tasks that shall be carried out are available within the NFPA guidance.

It is the PM tasks and scheduling owner's responsibility to ensure that all standard/regulatory and/or compliance activities are covered for the facility's assets and recorded in the facility's database.

Refer to **Attachment 3 Electrical System PM Type Inclusion Check Matrix template** for guidance.

The checklist shall include, but not be limited to, the systems mentioned below (NFPA references are intended only to provide guidance and not serve as an exhaustive list of standards to be applied):

- Generators and associated EPS
 - Emergency generation and associated systems: NFPA 110, 72 & 70B
- UPS & CBS
- Stored Electrical Energy Systems Emergency lighting and Central battery systems
 - NFPA: 70, 70B 110 and 111
- Fire systems
 - Water-based fire systems: NFPA 12, 72, 20 and 25
- Lightning Protection system
 - NFPA 70 and 780
- Carbon monoxide Detection and Warning Equipment
 - NFPA 70 and 720

6.3.4 Quarterly

All systems should be monitored on a quarterly basis within facilities this is considered a good practice. If any of the PM tasks require staff area access this should be arranged well in advance of the access requirement. In addition, staff must be informed of any possible electrical downtimes.

Quarterly PM related tasks usually involve extended plant downtime during maintenance activities. Maintenance tasks scheduled to take place on a monthly basis or greater will generally require additional time to complete. These activities may also entail that equipment be isolated from service which may in turn require switching operations that involve the participation of more than one staff member to complete.

It is of prime importance that the following is undertaken prior to carrying out this activity:

- Stakeholder engagement
- Consumables, spare parts availability
- Competent personnel to undertake the task
- Permit to Work
- Isolation facility and associated LOTO equipment
- Segregation and barriers available to prevent intrusion into the work area

The above list is not exhaustive and local requirements may require further considerations. These should be included within the Maintenance Instruction guide / Task Instruction sheet.

To understand the additional requirements and how they should be scheduled alongside the Monthly PM tasks or as separate actions, a cross referencing and review exercise should be conducted by the FMC team.

(Refer to Figure 2: Roles and Responsibilities for Schedules and PM Task Implementation)

When the quarterly additions have been established, are compliant with standards and regulations, and approved as per the process, the CMMS managing party shall input this information into the system, using the current condition of equipment as an input for future maintenance planning. Where deficiencies may exist, a maintenance task may need to be created for follow-up action. Parameters for input logging need to be set and associations with other tasks must be defined.

It is important, during the further development of PM tasks and input into the adopted CMMS system, to establish what output reports the FMC and/or client/Entity will require from the information and how they could be gathered and reported. Guidance should be sought from the software developer or included manuals, where bespoke reports may be required.

NFPA standards should serve as a reliable reference guide for the plan.

6.3.5 Biannually

All systems should be monitored on a quarterly basis within facilities this is considered a good practice. If any of the PM tasks require staff area access this should be arranged well in advance of the access requirement. In addition, staff must be informed of any possible electrical downtimes.

Biannual PM Task procedures may be standalone tasks or may include the formulated quarterly PM tasks along with additional requirements. It must be noted that six monthly (biannual) PM tasks will often require manufacturer recommended or standard mandated equipment and/or consumable part replacements. NFPA 110 demonstrates this within the PM frequency and task tables at annex A for EPS.

Where scheduled maintenance will have a significant impact upon the operation of the facility, the scheduled periods may need to be brought forward or deferred to meet with term requirements of the facility. These changes must be agreed with any third party support where delaying maintenance activities could have financial implications on warranty or contractual comprehensive agreements. Senior management of the facility must gain the approval of the ministry to make these decisions at a local level.

Reporting for biannual activities should follow the same process for recording and reporting functions, as those outlined above for monthly maintenance activities.

6.3.6 Annually

These procedures may be standalone tasks or be inclusive of the biannual procedures along with additional requirements. Some of these tasks may require prior high-level FOC management approval (depending on the cause and effect on the building operations), to ensure adequate resources are available.

The maintenance team should record all activities and retain copies of service documentation on site for future reference or compliance. Where possible the service record should be recorded within the CMMS as a signed copy upon handover by both the service technician (OEM/ Agent) and approved technician or onsite Operation Engineer.

Post maintenance testing may also be required and demonstrated to site staff on completion. The procedure for recording and witnessing those activities can be found in Volume 6 Chapter 27 – Post Maintenance Testing (PMT).

6.3.7 Biennially

All systems should be monitored on a quarterly basis within facilities this is considered a good practice. If any of the PM tasks require staff area access this should be arranged well in advance of the access requirement. In addition, staff must be informed of any possible electrical downtimes.

These procedures normally include the annual procedures and replace the annual PM task. However, they may also represent separate standalone PM tasks. This is because biennial tasks are generally more internally intrusive to the equipment and may require extended shutdown and parts replacements. The FOC and FMC must assess the cause and effect on the building operations, staff and patients, and schedules appropriately. An example of a biennial task is transformer maintenance requiring a full shutdown and isolation at MV and LV level. This may require standby systems to be brought into service for extended periods to allow maintenance activities to be performed. It is therefore of paramount importance that these systems be maintained prior to the biennial activity to allow maintenance to proceed without interruption.

High level FOC management and faculty department approval (depending on the cause and effect on the facility operations), should be gained well in advance to ensure adequate resources will be available, and that the departmental stakeholder engagement process has been followed.

6.3.8 Quinquennial

All systems should be monitored on a quarterly basis within facilities this is considered a good practice. If any of the PM tasks require staff area access this should be arranged well in advance of the access requirement. In addition, staff must be informed of any possible electrical downtimes.

These procedures shall normally include the Biennial procedures formulated with additional requirements. However, in some cases the Quinquennial tasks may be scheduled separately to the annual or biennial PM tasks.

The FMC must assess the cause and effect on the building operations, faculties and schedule appropriately. High level FOC management and clinical department approval (depending on the cause and effect on the facility operations), should be gained well in advance to ensure adequate resources will be available, and that the departmental stakeholder engagement process has been followed.

All subsequent scheduled maintenance planning for PM related tasks conducted from a biannual through a Quinquennial basis should comply with NFPA standards as a minimum. The FMC should then expand upon this baseline to deliver an efficient, fully compliant, and comprehensive maintenance plan to the Entity and/or FOC.

Electrical Systems Maintenance Plan for Healthcare

Some annual, biannual and quinquennial tasks are standalone compliance procedures such as periodic electrical tests and inspections, portable appliance testing, etc. These procedures shall be planned and scheduled separately to the normal equipment PM, and also may require dedicated engineering staff or third party resources.

Depending on the facility size, some quarterly PM tasks will normally be scheduled to take place throughout the facility area by area, against an agreed plan of action, and may be scheduled to take place weekly, monthly, quarterly, etc. (depending on the volume of assets to be tested), over a one to five-year scheduling period.

An example maintenance activity may include the following:

- UPS quarterly PM (every three months)
 - 148 assets throughout the FMC facility
 - Two quarterly PM tasks per year per asset
 - Each UPS quarterly PM takes four (4) hours

Therefore, to accomplish just the UPS quarterly PM tasks, Quarterly Preventative Maintenance (QPM) will need to be scheduled within the maintenance plan over an extended period throughout the year. This does not allow for the weekly, monthly, biannual or yearly tasks. This is why, the maintenance plan must integrate as far as possible PM tasks, and schedule manpower accordingly for optimum efficiency enablement.

Refer to **Attachment 1** UPS yearly maintenance plan sample template for guidance.

Example 2: facility maintenance activity may include the following:

- facility area periodic electrical testing
 - Facility buildings
 - Yearly PM task
 - Each periodic test takes four (4) to five (5) hours (probable evenings / weekend activity)

Therefore, only one building can be completed in a working day and may require evening and or weekend scheduling of an electrical periodic testing certified team. this may need to be scheduled over an extended period to accommodate staff, patient access. Other public, common and back of house areas will also need to be scheduled for the testing team. A separate periodic testing schedule will be required within the maintenance plan.

Refer to Attachment 3: "Electrical system PM Type Compliance Matrix" Each building would be entered in the system column with the PM compliance recorded.

The attachments to this document will enable the Entity, FOC and FMC to understand the fundamentals required when compiling the maintenance plan, or these baseline requirements that may already form the foundation of an existing document needing development.

Note that these documents are not intended to serve as a standard model. Rather, they have been produced merely as representative samples. Much analysis of a facility's adopted standards and asset PM requirements will need to be compiled to deliver a final maintenance plan. The attached samples will guide the FMC on how to gather and record data, enabling them to deliver a maintenance plan schedule and a compliant, comprehensive set of documents outlining lifecycle and PM related tasks.

7.0 ATTACHMENTS

1. EOM-ZM0-TP-000007 – UPS Yearly Maintenance Plan Example Template
2. EOM-ZM0-TP-000008 – Maintenance Skill Level Requirements Matrix
3. EOM-ZM0-TP-000009 – Electrical system PM Type Compliance Matrix Example Template

Attachment 1 – EOM-ZM0-TP-000007 – UPS Yearly Maintenance Plan Example Template

UPS unit yearly maintenance plan (SAMPLE)

Document number EOM-ZM0-TP-000007 (Last revision date: 14/01/2020)

UPS yearly maintenance plate sample template
(insert "X" into cell as appropriate)

Asset No	MONTH	WEEKLY	MONTHLY	QUARTERLY	BIANNUAL	ANNUAL	expand as required
UPS 1	1						
UPS 1	2						
UPS 1	3						
UPS 1	4						
UPS 1	5						
UPS 1	6						
UPS 1	7						
UPS 1	8						
UPS 1	9						
UPS 1	10						
UPS 1	11						
UPS 1	12						
YEARLY TOTAL PM's FOR ASSET UPS 1		WEEKLY	MONTHLY	QUARTERLY	BIANNUAL	ANNUAL	XXXX ?
		0	0	0	0	0	0

TOTAL FACILITY UPS ASSETS

YEARLY TOTAL PM's FOR 148 No UPS ASSETS	WEEKLY	MONTHLY	QUARTERLY	BIANNUAL	ANNUAL	xxxxx ?	TOTAL UPS PM TASK's PER YEAR
	0	0	0	0	0	0	0

Attachment 2 – EOM-ZM0-TP-000008 – Maintenance Skill Level Requirements Matrix

NOTE:

1 – This matrix is a guide representation only and should not be replicated as a true illustration of the system competency level requirements

2 – This matrix guide is not a final and comprehensive table and requires further development in line with the facilities electrical system assets.

In-house Skill:

Level 1 – manufacturer trained & or Engineer **level 2** – certified Discipline trained, **level 3** - competency assessed operative, **level 4** – assessed helper

Specialist Skill:

Level 1 specialist – life safety licensed company and operatives, **Level 2 specialist** – Manufacturer / manufacturer trained and certified

Type of maintenance task	Service Provision by:		Required competency level
LV Emergency power Distribution	In-house	Specialist	
Emergency power MDB's	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Level 1 / 2 in-house & Level
Emergency power SMDB	<input checked="" type="checkbox"/>		Level 1 / 2 in-house
Emergency power DB	<input checked="" type="checkbox"/>		Level 1 / 2 in-house
Emergency power 410V equipment	<input checked="" type="checkbox"/>		Level 1 / 2 in-house
Emergency power 230V equipment	<input checked="" type="checkbox"/>		Level 1 / 2 in-house
LV Normal power Distribution	In-house	Specialist	
Normal power MDB's	<input checked="" type="checkbox"/>		Level 2 / 3 in-house
Normal power SMDB	<input checked="" type="checkbox"/>		Level 2 / 3 in-house
Normal power DB	<input checked="" type="checkbox"/>		Level 2 / 3 in-house
Normal power 410V equipment	<input checked="" type="checkbox"/>		Level 2 / 3 in-house
Normal power 230V equipment	<input checked="" type="checkbox"/>		Level 2 / 3 / 4 in-house
Normal power Light fittings	<input checked="" type="checkbox"/>		Level 2 / 3 / 4 in-house
Normal power outlets	<input checked="" type="checkbox"/>		Level 2 / 3 / 4 in-house
Type of maintenance task	Service provision by:		Required competency level
LV Life safety equipment / plant	In-house	Specialist	
Life safety MDB	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Level 1 / 2 in-house & level
Life safety SMDB	<input checked="" type="checkbox"/>		Level 1 / 2
Life safety DB	<input checked="" type="checkbox"/>		Level 1 / 2
Fire Panels	<input checked="" type="checkbox"/>		Level 1 / 2 in-house & level 1
Fire pumps	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Level 1 / 2 in-house & level
Central battery		<input checked="" type="checkbox"/>	Level 1 specialist
LV Specialist equipment	In-house	Specialist	
UPS panel		<input checked="" type="checkbox"/>	Level 2 specialist
UPS outlets	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Level 2 / 3 in-house & Level
Expand columns/ rows for other	In-house	Specialist	

Electrical Systems Maintenance Plan for Healthcare

NOTE:

- 1 – This matrix is a guide representation only and should not be replicated as a true illustration of the system competency level requirements
- 2 – This matrix guide is not a final and comprehensive table and requires further development in line with the facilities electrical system assets.

In-house Skill:

Level 1 manufacturer trained and/or Engineer Level 2 certified discipline trained, level 3 - competency assessed operative, level 4 – assessed helper

Specialist Skill:

Level 1 specialist – life safety licensed company and operatives, **Level 3 specialist** – Manufacturer / manufacturer trained and certified

Type of maintenance task	Service provision by:		Required competency level
LV Emergency power Distribution	In-house	Specialist Supplier	
Emergency power MDB's			
Emergency power SMDB			
Emergency power DB			
Emergency power 410V equipment			
Emergency power 230V equipment			
LV Normal power Distribution	In-house	Specialist Supplier	
Normal power MDB's			
Normal power SMDB			
Normal power DB			
Normal power 410V equipment			
Normal power 230V equipment			
Normal power Light fittings			
Normal power outlets			
Type of maintenance task	Service provision by:		Required competency level
LV Life safety equipment / plant	In-house	Specialist Supplier	
Life safety MDB			
Life safety SMDB			
Life safety DB			
Fire Panels			
Fire pumps			
Central battery			
LV Specialist equipment	In-house	Specialist Supplier	
UPS panel			
UPS outlets			
Expand columns/ row's for other equipment as required	In-house	Specialist Supplier	

Attachment 3 – EOM-ZM0-TP-000009 – Electrical system PM Type Compliance Matrix Example Template

NOTE:

- 1 – This matrix is a guide representation only and should not be treated as a true illustration of the designated system categories or inclusion elements such as compliance, standard, regulatory, manufacturer and best practice.
- 2 – This matrix is not a final and comprehensive table and requires further development in line with the facility's electrical system assets.

Description			System Equipment Category					Type of PM included in plan					Compliant to	
System	Sub-System	Equipment	Life safety	Critical	Essential	Utility	Non-Essential	Compliance	Standard	Regulatory	Manufacturer	Best Practice	KSA / NFPA / HTM etc.	
High voltage	Transformer	Cabling	X	X					X		X	X	NFPA /KSA	
	Transformer	Oil	X	X					X		X	X	NFPA /KSA	
	Transformer	Earthing	X	X					X		X	X	NFPA /KSA	
	Transformer	Porcelain Isolators	X	X				X	X		X	X	NFPA /KSA	
	Transformer	Cable	Cable Pit / overhead infrastructure	X	X				X				X	NFPA
	Transformer Area	Cage	X	X					X	X			X	NFPA
	Transformer Area	Earthing	X	X					X	X			X	NFPA /KSA
	Transformer Area	Fire suppression	X					X	X	X	X	X	NFPA /KSA	
	Transformer Area	Fire detection	X					X	X	X	X	X	NFPA /KSA	
	Transformer Area	Emergency lighting	X					X	X	X	X	X	NFPA	
Medium Voltage	Transformer	Cabling	X	X	X	X	X	X	X	X	X	X	NFPA	
	Transformer	Oil	X	X	X	X	X	X	X	X	X	X	NFPA	
	Transformer	Earthing	X	X	X	X	X	X	X	X			NFPA	
	Transformer Room	Fire suppression	X					X	X	X	X	X	NFPA /KSA	
	Transformer Room	Fire detection	X					X	X	X	X	X	NFPA /KSA	
	Transformer Room	Emergency lighting	X					X	X	X	X	X	NFPA /KSA	
	Transformer Room	Earthing	X	X	X	X	X	X	X	X			NFPA	
Low Voltage	MDB	Cabling	X	X	X	X	X	X	X	X	X	X	NFPA	
	MDB	Earthing	X	X	X	X	X	X	X	X			NFPA	
	MDB	Circuit Breakers	X	X	X	X	X	X	X	X	X	X	NFPA	
	MDB	Bus Couplers	X	X	X	X	X	X	X	X	X	X	NFPA	
	MDB	Control Panels	X	X	X	X	X	X	X	X	X	X	NFPA	
	MDB Room	Fire suppression	X					X	X	X	X	X	NFPA /KSA	
	MDB Room	Fire detection	X					X	X	X	X	X	NFPA /KSA	
	MDB Room	Emergency lighting	X					X	X	X	X	X	NFPA /KSA	
	MDB Room	Earthing	X	X	X	X	X	X	X	X			NFPA	
	SMDB	Cabling	X	X	X	X	X	X	X	X			NFPA	
	SMDB	Earthing	X	X	X	X	X	X	X	X			NFPA	
	SMDB	Circuit Breakers	X	X	X	X	X	X	X	X	X	X	NFPA	
	SMDB Room	Fire suppression	X					X	X	X	X	X	NFPA /KSA	
	SMDB Room	Fire detection	X					X	X	X	X	X	NFPA /KSA	
	SMDB Room	Emergency lighting	X					X	X	X			NFPA /KSA	
	SMDB Room	Earthing	X	X	X	X	X	X	X	X	X	X	NFPA	
	DB	Cabling	X	X	X	X	X	X	X	X			NFPA	
	DB	Earthing	X	X	X	X	X	X	X	X			NFPA	
	DB	Circuit Breakers	X	X	X	X	X	X	X	X	X	X	NFPA	
	DB Area	Fire suppression	X					X	X	X	X	X	NFPA /KSA	
	DB Area	Fire detection	X					X	X	X	X	X	NFPA /KSA	
	DB Area	Emergency lighting	X					X	X	X	X	X	NFPA /KSA	